
CSC 108H: Introduction to Computer
Programming

Summer 2012

Marek Janicki

June 21 2012

Administration

● Midterm is next week.

● Room assignments will be posted on Piazza/website
tomorrow.

● Assignment typos.

● Should be fixed now.
● I just realised Monday after the midterm is a holiday.

● So the assignment deadline has been extended to allow
for more help centre access.

● Also, no office hours next Friday or Monday (after the
midterm).

● Friday office hours are moved to next Wednesday.

June 21 2012

List Review

● != and == use element by element comparison.
● Lists can be nested.

● We then use multiple pairs of brackets to index into
nested lists.

● The brackets closes to the list name are the first list,
and subsequent brackets go into the nesting one at
a time.

● list_name[i][j][k]

● Tuples are non-mutable lists.

June 21 2012

List Review

● != and == use element by element comparison.
● Lists can be nested.

● We then use multiple pairs of brackets to index into
nested lists.

● The brackets closes to the list name are the first list,
and subsequent brackets go into the nesting one at
a time.

● list_name[i][j][k]

● Tuples are non-mutable lists.

June 21 2012

List Review

● != and == use element by element comparison.
● Lists can be nested.

● We then use multiple pairs of brackets to index into
nested lists.

● The brackets closes to the list name are the first list,
and subsequent brackets go into the nesting one at
a time.

● list_name[i][j][k]

● Tuples are non-mutable lists.

June 21 2012

List Review

● != and == use element by element comparison.
● Lists can be nested.

● We then use multiple pairs of brackets to index into
nested lists.

● The brackets closes to the list name are the first list,
and subsequent brackets go into the nesting one at
a time.

● list_name[i][j][k]

● Tuples are non-mutable lists.

June 21 2012

Evaluate the Expressions

● a = [9, 2, 5]

● a == [9, 2, 5]

● a0 = (9, 2, 5)

● a != a0

● b = [a, a0, a]

● b[1][2] == a[2]

● a[0] = 10
● b[1][0]

● b[0][0]

● b[1][0] = 11

June 21 2012

Evaluate the Expressions

● a = [9, 2, 5]

● a == [9, 2, 5]

True

● a0 = (9, 2, 5)

● a != a0

True

● b = [a, a0, a]

● b[1][2] == a[2]

True

● a[0] = 10
● b[1][0]

9
● b[2][0]

10
● b[1][0] = 11

AssignmentError

June 21 2012

While Review

● While loops syntax:

while condition:

 block

● The block is repeated as long as the condition
is true.

● The block may never be executed.
● Every for loop may be rewritten as a while, but

the reverse is not true.

June 21 2012

How many times do these execute?

while True:

 print True

i = 15

while i > 0:

 i -= 2

i = 15

while i < 0:

 i-= 2

June 21 2012

How many times do these execute?

while True:

 print True

● Infinitely
many.

i = 15

while i > 0:

 i -= 2

● Eight

i = 15

while i < 0:

 i-= 2

● Never

June 21 2012

File Review.

● Files can be opened, closed and written to.
● Can be opened in three modes - 'r', 'w',
'a'
● 'r' allows a file to be read.
● 'w' - writes to a file and blanks it if there are things

in it.
● 'a' - appends to the end of a file.

● Can read the whole file, a line at a time, and
some fixed number of characters at a time.

● Close a file after using it.

June 21 2012

Consider a file that has 13 characters per
line for 5 lines, what character would be

read next?
● eg_file.read()● eg_file.readline()

● eg_file.read(15)

● eg_file.readline()

● eg_file.readline()

● eg_file.readline()

● eg_file.read(15)

June 21 2012

Consider a file that has 13 characters per
line for 5 lines, what character would be

read next?
● eg_file.read()

● An eof
character.

● eg_file.readline()

● eg_file.read(15)

● eg_file.readline()

● The first
character of the
fourth line.

● eg_file.readline()

● eg_file.readline()

● eg_file.read(15)

● The third
character of the
fourth line.

June 21 2012

Lookup Tables

● We saw that python has lookup tables for local
and global variables.

● It might be nice to have our own.
● This would allow use to associate lots of information

with a unique piece of information, like a string, or a
number.

● Can store records via student
name/date/number/etc.

June 21 2012

Lookup tables

● We could implement this with lists and tuples.
● Each element of a list might be a tuple with the

format (id, information).
● To get information back about the id we'd need

to find out the index and then use
list_name[index][1].

June 21 2012

Lookup tables

● We could implement this with lists and tuples.
● Each element of a list might be a tuple with the

format (id, information).
● To get information back about the id we'd need

to find out the index and then use
list_name[index][1].

● Two problems with this:
● Bulky, requires more than one line of code.
● Slow, lookup tables are constant, but we need to

find the element.

June 21 2012

Example

● A lot of searching is based on word counts.
● This is especially true in fixed data bases like

Academic journals.

● One reads through a document, and counts
words; and then normalises the word counts.

● Related documents should have similar
normalised word counts.

● So we want a (word, frequency) pair, but the
number of words could be massive.

June 21 2012

Dictionaries

● Dictionaries are (key, value) pairs. Sometimes
they are called maps. Can be thought of as
lookup tables.

● Python syntax:
{key0 : value0, key1 : value1, ...,
keyn : valuen}

● Dictionaries are of type dict
● Since they have a type, they can be assigned to a

variable.

● To refer to a value associated with a key in a
dictionary we use dictionary_name[key]

June 21 2012

Dictionaries

● Dictionaries are unsorted.
● Dictionary keys must be immutable, but the

values can be anything.
● Keys cannot be None.

● Once you've created a dictionary you can add
key-value pairs by assigning the value to the
key.

dictionary_name[key] = value

● Keys must be unique.

June 21 2012

Parentheses Aside.

● Python uses three kinds of parenthese (), [],
and {}.

● () are used for specifying parameters. This
means that parentheses are closely tied to
calling functions/methods.
● Also used to force order of operations.
● And tuples.

● [] Brackets are used to index into things.
● {} are used to create dictionaries.

June 21 2012

Representing Dictionaries in the Memory
Model.

● Dictionaries are implemented in such a way that
it is difficult to accurately represent them in the
memory model while also making it easy to see
what's going on.

● So instead we'll represent them as lookup
tables (on the right of the line) with the
evaluation of the key, but the memory address
of the value.
● Using memory addresses for both is more accurate

but less useful

June 14 2012

Dictionaries and the Memory Model

eg_dict = {'a':True, 0:1.2}

dict

0: 0x13
bool

0x7
True

float

0x13
1.2

eg_dict: 0x1
Global

0x1
'a': 0x7

June 14 2012

Dictionaries and the Memory Model

eg_dict = {'a':True, 0:1.2}

dict

0: 0x13

int

0x5
0

bool

0x7
True

float

0x13
1.2

str

0x10
'a'

eg_dict: 0x1
Global

0x1
'a': 0x7

June 14 2012

Dictionaries and the Memory Model

eg_dict = {'a':True, 0:1.2}

dict

0x5 : 0x13

int

0x5
0

bool

0x7
True

float

0x13
1.2

str

0x10
'a'

eg_dict: 0x1
Global

0x1
0x10 : 0x7

June 14 2012

Dictionaries and the Memory Model

eg_dict = {'a':True, 0:1.2}

dict

0: 0x13
bool

0x7
True

float

0x13
1.2

eg_dict: 0x1
Global

0x1
'a': 0x7

This is the style we want!

June 21 2012

Break, the first.

June 21 2012

Rewrite this code so that eg_list is a
dictionary, not a list.

eg_list = [4, 3, 6]

for i in range(2):

 eg_list.append(i*i)

print eg_list[0]

print eg_list[3]

print eg_list[4]

June 21 2012

Rewrite this code so that eg_list is a
dictionary, not a list.

eg_list = [4, 3, 6]

for i in range(2):

 eg_list[i].append(i*i)

print eg_list[0]

print eg_list[3]

print eg_list[4]

eg_dict = {0 : 4, 1 : 3, 2 : 6}

for i in range(2):

 eg_dict[i + 3] = i*i

print eg_dict[0]

print eg_dict[3]

print eg_dict[4]

June 21 2012

Dictionary methods.

● len(dict_name) works in the same way as it
does for strings and lists.

● + and * are not defined for dictionaries.
● dict.keys() - returns the keys in some order.

● dict.values() - returns the values in some
order.

● dict.items() - returns the (key, value) pairs
in some order.
● All of these methods have iter* variants that return

the keys|values|key-value pairs one by one.

June 21 2012

Dictionary methods.

● dict.has_key(key) - returns True iff the
dictionary has the key in it.

● dict.get(key) – returns the value that is
paired with the key, or None if no such key
exists.
● get(key, d) returns d rather than None if no

such key exists.

● dict.clear() - removes all the key-value
pairs from the dictionary.

June 21 2012

Dictionary methods.

● dict.copy() - copy the entire dictionary.

● Be wary if the dictionary has mutable objects.
● Can have the same issue has with nested lists.

● dict.update(dict_name) - adds the key-value pairs in
dict_name to dict.

● dict.pop(key) – removes and returns the key-value
pair indexed by the key.

● popitem returns the (key, value) pair.

June 21 2012

Why dictionaries?

● Dictionaries are useful if you want to have really
big sparse data structures.
● You can implement spreadsheet, or alarms with

dictionaries.

● Or if you get a big amount of data but you're not
quite sure how complete it is.
● So you have a bunch of names, but don't know how

many of them you'll actually see.

June 21 2012

Looping over dictionaries.

for key in d:

print key, d[keys]

● Works, but is a bit slow.
for key in d.iterkeys():

print key, d[keys]

● This is a bit better.
● However, the order is still arbitrary.
● How can we make the loop ordered?

June 21 2012

Inverting a dictionary.

● Sometimes we want to figure out what the key
corresponding to a given value is.

● This is impossible to do naively.
● That is, dict[value] will not return the key.

● That is we want an identical dictionary, except with
keys and values switched.

● If we haven't built the dictionary yet, then we can build
two at the same time, where they are inverses of each
other.

● Otherwise we need to build an inverse dictionary.

June 21 2012

A problem.

● While the keys in a dictionary must be unique,
the values don't have this restriction.

● So multiple keys can have the same value.
● How do we build our reverse dictionary?
● We still need to make the values into keys, but

we won't have enough values to give each key
a unique value.

● We can solve this by pairing the original values
with lists of original keys.

June 21 2012

Break, the second.

June 21 2012

Write Code to reverse a dictionary.

June 21 2012

Write Code to reverse a dictionary.

def rev_dict(dict_in):

 dict_out = {}

 for key in dict_in:

 if dict_in[key] in dict_out:

 dict_out[dict_in[key]].append(key)

 else:

 dict_out[dict_in[key]] = [key]

 return dict_out

June 21 2012

Function Review

● Now that we've seen mutable objects, we can
see that there are essentially three kinds of
functions:
● Functions that return things.
● Functions that change mutable objects.
● Functions that do neither.

June 21 2012

Functions that return things.

● These are closest to the mathematical definition
of a function.

● They take input parameters and produce an
output parameter.

● f(x) = x2 takes in numbers and produces
numbers.

● To get the value of f(9) and replace the xs on
the right with 9s, and evaluate the expression.
● functions defined in code work in a similar way.

June 21 2012

Functions that change mutable objects

● These are functions that take in lists and
dictionary and modify them according to the
input parameters.

● These functions don't need have return
statements.
● Note, this does not mean they need print

statements or pass statements.

June 21 2012

Functions that change mutable objects

● These are functions that take in lists and
dictionary and modify them according to the
input parameters.

● These functions don't need have return
statements.
● Note, this does not mean they need print

statements or pass statements.
● Nothing needs pass statements.

June 21 2012

Functions that do neither

● These will generally show something to the
user.

● They might print something to the screen, or
load an image or play a sound file, etc.

● Don't need return statements.

June 21 2012

Midterm Review

● Will cover everything up to (but not including)
this lecture.
● ints, floats, bools, strings, lists.
● functions, local scope, global scope.
● print. vs. return.
● Modules, importing, if __name__ == '__main__'
● For loops and while loops.
● Files.
● Docstrings, function design.

June 21 2012

Midterm Review

● There will generally be three types of questions.
● Questions that ask you to read/understand code.
● Questions that ask you to convert one set of code to

an equivalent set of code.
– This is a new style of question. I will be posting a bunch

of practice questions on Friday from this style.
– Basically will involve re-writing code to use functions, or

writing while loops as for loops, etc.
● Questions that ask you to generate code.
● Will be 90 minutes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

