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June 21 2012

Administration

● Midterm is next week.

● Room assignments will be posted on Piazza/website 
tomorrow.

● Assignment typos.

● Should be fixed now.
● I just realised Monday after the midterm is a holiday.

● So the assignment deadline has been extended to allow 
for more help centre access.

● Also, no office hours next Friday or Monday (after the 
midterm).

● Friday office hours are moved to next Wednesday.



June 21 2012

List Review

● != and == use element by element comparison.
● Lists can be nested.

● We then use multiple pairs of brackets to index into 
nested lists.

● The brackets closes to the list name are the first list, 
and subsequent brackets go into the nesting one at 
a time.

● list_name[i][j][k]

● Tuples are non-mutable lists.
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Evaluate the Expressions

● a = [9, 2, 5]

● a == [9, 2, 5]

● a0 = (9, 2, 5)

● a != a0

● b = [a, a0, a]

● b[1][2] == a[2]

● a[0] = 10
● b[1][0]

● b[0][0]

● b[1][0] = 11
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Evaluate the Expressions

● a = [9, 2, 5]

● a == [9, 2, 5]

True

● a0 = (9, 2, 5)

● a != a0

True

● b = [a, a0, a]

● b[1][2] == a[2]

True

● a[0] = 10
● b[1][0]

9
● b[2][0]

10
● b[1][0] = 11

AssignmentError
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While Review

● While loops syntax:

while condition:

    block

● The block is repeated as long as the condition 
is true.

● The block may never be executed.
● Every for loop may be rewritten as a while, but 

the reverse is not true.
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How many times do these execute?

while True:

   print True

i = 15

while i > 0:

    i -= 2

i = 15

while i < 0:

    i-= 2
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How many times do these execute?

while True:

   print True

● Infinitely 
many.

i = 15

while i > 0:

    i -= 2

● Eight

i = 15

while i < 0:

    i-= 2

● Never
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File Review.

● Files can be opened, closed and written to.
● Can be opened in three modes - 'r', 'w', 
'a'
● 'r' allows a file to be read.
● 'w' - writes to a file and blanks it if there are things 

in it.
● 'a' - appends to the end of a file.

● Can read the whole file, a line at a time, and 
some fixed number of characters at a time.

● Close a file after using it.
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Consider a file that has 13 characters per 
line for 5 lines, what character would be 

read next?
● eg_file.read()● eg_file.readline()

● eg_file.read(15)

● eg_file.readline()

● eg_file.readline()

● eg_file.readline()

● eg_file.read(15)
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Consider a file that has 13 characters per 
line for 5 lines, what character would be 

read next?
● eg_file.read()

● An eof 
character.

● eg_file.readline()

● eg_file.read(15)

● eg_file.readline()

● The first 
character of the 
fourth line.

● eg_file.readline()

● eg_file.readline()

● eg_file.read(15)

● The third 
character of the 
fourth line.



June 21 2012

Lookup Tables

● We saw that python has lookup tables for local 
and global variables.

● It might be nice to have our own.
● This would allow use to associate lots of information 

with a unique piece of information, like a string, or a 
number.

● Can store records via student 
name/date/number/etc.
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Lookup tables

● We could implement this with lists and tuples.
● Each element of a list might be a tuple with the 

format (id, information).
● To get information back about the id we'd need 

to find out the index and then use 
list_name[index][1].
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Lookup tables

● We could implement this with lists and tuples.
● Each element of a list might be a tuple with the 

format (id, information).
● To get information back about the id we'd need 

to find out the index and then use 
list_name[index][1].

● Two problems with this:
● Bulky, requires more than one line of code.
● Slow, lookup tables are constant, but we need to 

find the element.
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Example

● A lot of searching is based on word counts.
● This is especially true in fixed data bases like 

Academic journals.

● One reads through a document, and counts 
words; and then normalises the word counts.

● Related documents should have similar 
normalised word counts.

● So we want a (word, frequency) pair, but the 
number of words could be massive.
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Dictionaries

● Dictionaries are (key, value) pairs. Sometimes 
they are called maps. Can be thought of as 
lookup tables.

● Python syntax:
{key0 : value0, key1 : value1, ..., 
keyn : valuen}

● Dictionaries are of type dict
● Since they have a type, they can be assigned to a 

variable.

● To refer to a value associated with a key in a 
dictionary we use dictionary_name[key]
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Dictionaries

● Dictionaries are unsorted.
● Dictionary keys must be immutable, but the 

values can be anything.
● Keys cannot be None.

● Once you've created a dictionary you can add 
key-value pairs by assigning the value to the 
key.

dictionary_name[key] = value

● Keys must be unique.
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Parentheses Aside.

● Python uses three kinds of parenthese (), [], 
and {}.

● () are used for specifying parameters. This 
means that parentheses are closely tied to 
calling functions/methods.
● Also used to force order of operations.
● And tuples.

● [] Brackets are used to index into things.
● {} are used to create dictionaries.
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Representing Dictionaries in the Memory 
Model.

● Dictionaries are implemented in such a way that 
it is difficult to accurately represent them in the 
memory model while also making it easy to see 
what's going on.

● So instead we'll represent them as lookup 
tables (on the right of the line) with the 
evaluation of the key, but the memory address 
of the value.
● Using memory addresses for both is more accurate 

but less useful
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Dictionaries and the Memory Model

eg_dict = {'a':True, 0:1.2}

dict

0: 0x13
bool

0x7
True

float

0x13
1.2

eg_dict: 0x1 
Global

0x1
'a': 0x7
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Dictionaries and the Memory Model

eg_dict = {'a':True, 0:1.2}

dict

0: 0x13

int

0x5
0

bool

0x7
True

float

0x13
1.2

str

0x10
'a'

eg_dict: 0x1 
Global

0x1
'a': 0x7
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Dictionaries and the Memory Model

eg_dict = {'a':True, 0:1.2}

dict

0x5 : 0x13

int

0x5
0

bool

0x7
True

float

0x13
1.2

str

0x10
'a'

eg_dict: 0x1 
Global

0x1
0x10 : 0x7



June 14 2012

Dictionaries and the Memory Model

eg_dict = {'a':True, 0:1.2}

dict

0: 0x13
bool

0x7
True

float

0x13
1.2

eg_dict: 0x1 
Global

0x1
'a': 0x7

This is the style we want!
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Break, the first.



June 21 2012

Rewrite this code so that eg_list is a 
dictionary, not a list.

eg_list = [4, 3, 6]

for i in range(2):

    eg_list.append(i*i)

print eg_list[0]

print eg_list[3]

print eg_list[4]
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Rewrite this code so that eg_list is a 
dictionary, not a list.

eg_list = [4, 3, 6]

for i in range(2):

    eg_list[i].append(i*i)

print eg_list[0]

print eg_list[3]

print eg_list[4]

eg_dict = {0 : 4, 1 : 3, 2 : 6}

for i in range(2):

    eg_dict[i + 3] = i*i

print eg_dict[0]

print eg_dict[3]

print eg_dict[4]
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Dictionary methods.

● len(dict_name) works in the same way as it 
does for strings and lists.

● + and * are not defined for dictionaries.
● dict.keys() - returns the keys in some order.

● dict.values() - returns the values in some 
order.

● dict.items() - returns the (key, value) pairs 
in some order.
● All of these methods have iter* variants that return 

the keys|values|key-value pairs one by one.
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Dictionary methods.

● dict.has_key(key) - returns True iff the 
dictionary has the key in it.

● dict.get(key) – returns the value that is 
paired with the key, or None if no such key 
exists.
● get(key, d) returns d rather than None if no 

such key exists.

● dict.clear() - removes all the key-value 
pairs from the dictionary.
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Dictionary methods.

● dict.copy() - copy the entire dictionary.

● Be wary if the dictionary has mutable objects.
● Can have the same issue has with nested lists.

● dict.update(dict_name) - adds the key-value pairs in 
dict_name to dict.

● dict.pop(key) – removes and returns the key-value 
pair indexed by the key.

● popitem returns the (key, value) pair.
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Why dictionaries?

● Dictionaries are useful if you want to have really 
big sparse data structures.
● You can implement spreadsheet, or alarms with 

dictionaries.

● Or if you get a big amount of data but you're not 
quite sure how complete it is.
● So you have a bunch of names, but don't know how 

many of them you'll actually see.
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Looping over dictionaries.

for key in d:

print key, d[keys]

● Works, but is a bit slow.
for key in d.iterkeys():

print key, d[keys]

● This is a bit better.
● However, the order is still arbitrary.
● How can we make the loop ordered?
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Inverting a dictionary.

● Sometimes we want to figure out what the key 
corresponding to a given value is.

● This is impossible to do naively.
● That is, dict[value] will not return the key.

● That is we want an identical dictionary, except with 
keys and values switched.

● If we haven't built the dictionary yet, then we can build 
two at the same time, where they are inverses of each 
other.

● Otherwise we need to build an inverse dictionary.
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A problem.

● While the keys in a dictionary must be unique, 
the values don't have this restriction.

● So multiple keys can have the same value.
● How do we build our reverse dictionary?
● We still need to make the values into keys, but 

we won't have enough values to give each key 
a unique value.

● We can solve this by pairing the original values 
with lists of original keys.
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Break, the second.
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Write Code to reverse a dictionary.
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Write Code to reverse a dictionary.

def rev_dict(dict_in):

    dict_out = {}

    for key in dict_in:

        if dict_in[key] in dict_out:

            dict_out[dict_in[key]].append(key)

        else:

            dict_out[dict_in[key]] = [key]

    return dict_out
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Function Review

● Now that we've seen mutable objects, we can 
see that there are essentially three kinds of 
functions:
● Functions that return things.
● Functions that change mutable objects.
● Functions that do neither.



June 21 2012

Functions that return things.

● These are closest to the mathematical definition 
of a function.

● They take input parameters and produce an 
output parameter.

● f(x) = x2 takes in numbers and produces 
numbers.

● To get the value of f(9) and replace the xs on 
the right with 9s, and evaluate the expression.
● functions defined in code work in a similar way.



June 21 2012

Functions that change mutable objects

● These are functions that take in lists and 
dictionary and modify them according to the 
input parameters.

● These functions don't need have return 
statements.
● Note, this does not mean they need print 

statements or pass statements.
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Functions that change mutable objects

● These are functions that take in lists and 
dictionary and modify them according to the 
input parameters.

● These functions don't need have return 
statements.
● Note, this does not mean they need print 

statements or pass statements.
● Nothing needs pass statements.
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Functions that do neither

● These will generally show something to the 
user.

● They might print something to the screen, or 
load an image or play a sound file, etc.

● Don't need return statements.
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Midterm Review

● Will cover everything up to (but not including) 
this lecture.
● ints, floats, bools, strings, lists.
● functions, local scope, global scope.
● print. vs. return.
● Modules, importing, if __name__ == '__main__'
● For loops and while loops.
● Files.
● Docstrings, function design.
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Midterm Review

● There will generally be three types of questions.
● Questions that ask you to read/understand code.
● Questions that ask you to convert one set of code to 

an equivalent set of code.
– This is a new style of question. I will be posting a bunch 

of practice questions on Friday from this style.
– Basically will involve re-writing code to use functions, or 

writing while loops as for loops, etc.
● Questions that ask you to generate code.
● Will be 90 minutes.
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